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Roush,10 and those of the bicyclic diamine 5 studied by Alder, 
Gill, and Goode.12 The ions of both 4 and 5 differ from those 
of 2 in that the former have a a bonding interaction between 
the heteroatoms, while 2+« and 22+ are x ions.13 
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Sensitized Photooxygenation of l-Methyl-3-vinylindoles 

Sir: 

The oxidations of indoles with molecular oxygen, including 
singlet oxygen ('O2), have been extensively studied.' Most of 
them involve C2-C3 ring cleavage or the formation of 3-hy-
droperoxidic intermediates. In the sensitized photooxygenation 
of vinyl-substituted aromatics, '02 attacks on the side chain 
to give carbonyl compounds (1,2-cycloaddition) and/or allylic 
hydroperoxides ("ene" reaction),2 or adds to a diene system 
comprised of the side chain and an aromatic double bond 
(1,4-cycloaddition).3 In this communication, we wish to report 
on the results of the reaction of l-methyl-3-vinylindoles with 
'02. The characteristic features of our results are as follows: 
(a) '02 can easily add to the vinylindoles with retention of 
stereochemistry to give dioxacarbazole-type 1,4-endoperoxides 
in aprotic solvents, while the photooxygenation in protic sol­
vents yields 3-formyl-l-methylindole; (b) unusual fragmen­
tation of the dioxacarbazole-type 1,4-endoperoxides occurs 
to afford two aldehydes through the supposed dioxetane in­
termediate. These observations suggest that the 1,4-endop-
eroxide might be an initial intermediate prior to the interme­
diary dioxetane in the oxidative double bond cleavage of the 
vinylindoles with '02 in protic solvents. 

When the sensitized photooxygenation4 of 1-methyl-
?ra«s-3-styrylindole (la)5 was carried out in /j-hexane con­
taining 10% dichloromethane, a 1,4-endoperoxide 2a has 
precipitated as silky crystals in 96% yield, mp 99.0-100.5 0C. 

The NMR spectrum6 of 2a displayed a singlet at 5 2.86 (3 H, 
N-CH3), and four multiplets centered at 5.56 (1 H, Hd), 5.86 
(IH, Ha or Hb) 5.92 (1 H, Hb, or H3), and 7.0 (9 H, aromatic) 
ppm with their coupling constants: J-& = J^ = JM = 2.6 Hz. 
Other spectral characteristics of 2a were as follows: IR (KBr) 
1605, 1060,1040, and 1022 cm"1; MS (m/e) 265 (M+, 25%), 
160 (100). Anal. (CnHi5NO2): C, 76.99; H, 5.67; N, 5.17. 

Similar photooxygenation of the cis-isomer lb5 afforded the 
stereoisomer 2b7'8 as granules in 90% yield, mp 80-81 0C. The 
olefin la gave no 2b, whereas the isomer lb gave no 2a. Con­
sequently the 1,4-cycloaddition of 1O2 to the vinylindoles 1 is 
a completely stereospecific process. 

Similarly, l-methyl-3-vinylindole (Ic) was photooxygenated 
to give the corresponding peroxide 2c9 as flakes in 71% yield, 
mp 80-82 0C. The irradiation of l-methyl-3-(2-methylpro-
pen-l-yl)indole (Id) gave also the 1,4-endoperoxide 2d10 as 
an oil in quantitative yield. 

Furthermore, a vinylindole bearing an electron-withdrawing 
substituent on the /3-carbon of the side chain undergoes the 
1,4-cycloaddition of' O2. Thus 1 -methyl-3-(2-pivaloylvinyl)-
indole (Ie)" was photooxygenated12 to give two oxindoles 3e13 

and 4e14 in the yields of 43 and 24%, respectively. Under the 
reaction conditions, the corresponding 1,4-endoperoxide 2e 
could not be obtained because of its easy isomerization to the 
oxindole 3e (vide infra). The oxindole 4e might be formed 
through a further isomerization of 3e; in fact, 3e was converted 
to 4e quantitatively by prolonged treatment under the isolation 
conditions or in the presence of acid catalyst. 

.R2 

CtT* 
CH3 

la, R1 = H; R2 = C6H5 
Ib1R1 = C6H5; R

5 = H 
Ic, R1, R2 = H 
Id, R1, R2 = CH3 
Ie, R' = H; R2 = C(M-C4H9 

^(Hc) 
RKHd) 

2a, R1 = H; R2 = C6H5 
2b, R1 = C6H5; R

2 = H 
2c, R1, R2 = H 
2d, R1, R2 = CH3 
2e, R1 = H; R2 = COr-C4H9 

C6H5 
CO-J-C4H9 

In contrast with the reaction in aprotic solvents, the sensi­
tized photooxygenation of the vinylindoles 1 in protic solvents 
caused dramatic change of products.'5 When the vinylindole 
la was irradiated in ethanol or methanol, not the corresponding 
peroxide 2a but 3-formyl-l-methylindole 5 was obtained to­
gether with benzaldehyde in more than 90% yield. The other 
vinylindoles lb-d were also converted to the aldehyde 5 in 
protic solvents. It should be noted that, in all cases examined, 
the indole 1 gave no products derived from a 1,2-addition of 
'02 onto the C2-C3 double bond or a 3-peroxidic intermedi­
ate. 

The unexpected solvent effects on the sensitized photooxy­
genation of the vinylindole 1 could reasonably be interpreted 
by the following facts; the 1,4-endoperoxide 2a was quantita­
tively decomposed into the formylindole 5 and benzaldehyde 
in alcohol (TI/2 ^ 10 min at room temperature) (path A), 
whereas, the peroxide 2a was fairly stable in aprotic solvents 
such as benzene, chloroform, acetonitrile, and n-octane. It was 
easily isomerized into an oxindole 3a16 when heated in solution 
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CHO 

^ - ^ N ^ + PhCHO + hv 

CH3 

t 

(path B).17 The oxindole 3a was further isomerized into the 
alcohol 4a18 (80% yield based on 2a), which was finally 
transformed into the ketone 6a19 in quantitative yield. The 
ketone 6a was directly obtained from 2a by treatment with a 
catalytic amount of triethylamine at ambient temperature 
(97% yield). When the peroxide 2a was allowed to stand in 
chloroform containing a small amount of methanol, both the 
fragmentation (path A) and the isomerization (path B) oc­
curred competitively to give a mixture of 3a, 5, and benzal-
dehyde. Thus, the fragmentation (path A) is catalyzed by al­
cohol and might occur through a dioxetane intermediate 7a. 
It is noteworthy that the weak chemiluminescence,20 which 
may be due to the dioxetane intermediate, was observed in the 
course of fragmentation. This type of chemiluminescence has 
been scarcely reported so far, though several examples of the 
fragmentation of 1,4-endoperoxides into two carbonyls were 
known.21 

From these facts, it may be concluded that in the sensitized 
photooxygenation of vinylindoles 1 in protic solvents, 1,4-
cycloaddition of '02 initially takes place to afford a 1,4-en-
doperoxide, which is then isomerized to a dioxetane interme­
diate and finally cleft to two aldehydes under the reaction 
conditions. At this stage, however, the direct 1,2-cycloaddition 
of 1Ch onto the vinly substituent cannot be excluded com­
pletely. 
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